Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Jpn J Radiol ; 41(6): 617-624, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2174888

ABSTRACT

PURPOSE: Unilateral axillary lymphadenopathy is known to occur after coronavirus disease (COVID-19) vaccination. Post-vaccination lymphadenopathy may mimic the metastatic lymph nodes in breast cancer, and it is challenging to distinguish between them. This study investigated whether the localization of axillary lymphadenopathy on magnetic resonance imaging (MRI) could be used to distinguish reactive lymphadenopathy after COVID-19 vaccines from metastatic nodes. MATERIALS AND METHODS: We retrospectively examined preoperative MRI images of 684 axillae in 342 patients who underwent breast cancer surgery from June to October 2021. Lymphadenopathy was defined as cortical thickening or short axis ≥ 5 mm. The axilla was divided into ventral and dorsal parts on the axial plane using a perpendicular line extending from the most anterior margin of the muscle group, including the deltoid, latissimus dorsi, or teres major muscles, relative to a line along the lateral chest wall. We recorded the presence or absence of axillary lymphadenopathy in each area and the number of visible lymph nodes. RESULTS: Of 80 axillae, 41 and 39 were included in the vaccine and metastasis groups, respectively. The median time from the last vaccination to MRI was 19 days in the vaccine group. The number of visible axillary lymph nodes was significantly higher in the vaccine group (median, 15 nodes) than in the metastasis group (7 nodes) (P < 0.001). Dorsal lymphadenopathy was observed in 16 (39.0%) and two (5.1%) axillae in the vaccine and metastasis groups, respectively (P < 0.001). If the presence of both ventral and dorsal lymphadenopathy is considered indicative of vaccine-induced reaction, this finding has a sensitivity of 34.1%, specificity of 97.4%, and positive and negative predictive values of 93.3% and 58.5%, respectively. CONCLUSION: The presence of deep axillary lymphadenopathy may be an important factor for distinguishing post-vaccination lymphadenopathy from metastasis. The number of axillary lymph nodes may also help.


Subject(s)
Breast Neoplasms , COVID-19 , Lymphadenopathy , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , COVID-19 Vaccines/adverse effects , Retrospective Studies , Sensitivity and Specificity , Lymphatic Metastasis , COVID-19/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/etiology , Vaccination , Axilla/pathology
2.
BMC Pulm Med ; 22(1): 1, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1608729

ABSTRACT

BACKGROUND: Quantitative evaluation of radiographic images has been developed and suggested for the diagnosis of coronavirus disease 2019 (COVID-19). However, there are limited opportunities to use these image-based diagnostic indices in clinical practice. Our aim in this study was to evaluate the utility of a novel visually-based classification of pulmonary findings from computed tomography (CT) images of COVID-19 patients with the following three patterns defined: peripheral, multifocal, and diffuse findings of pneumonia. We also evaluated the prognostic value of this classification to predict the severity of COVID-19. METHODS: This was a single-center retrospective cohort study of patients hospitalized with COVID-19 between January 1st and September 30th, 2020, who presented with suspicious findings on CT lung images at admission (n = 69). We compared the association between the three predefined patterns (peripheral, multifocal, and diffuse), admission to the intensive care unit, tracheal intubation, and death. We tested quantitative CT analysis as an outcome predictor for COVID-19. Quantitative CT analysis was performed using a semi-automated method (Thoracic Volume Computer-Assisted Reading software, GE Health care, United States). Lungs were divided by Hounsfield unit intervals. Compromised lung (%CL) volume was the sum of poorly and non-aerated volumes (- 500, 100 HU). We collected patient clinical data, including demographic and clinical variables at the time of admission. RESULTS: Patients with a diffuse pattern were intubated more frequently and for a longer duration than patients with a peripheral or multifocal pattern. The following clinical variables were significantly different between the diffuse pattern and peripheral and multifocal groups: body temperature (p = 0.04), lymphocyte count (p = 0.01), neutrophil count (p = 0.02), c-reactive protein (p < 0.01), lactate dehydrogenase (p < 0.01), Krebs von den Lungen-6 antigen (p < 0.01), D-dimer (p < 0.01), and steroid (p = 0.01) and favipiravir (p = 0.03) administration. CONCLUSIONS: Our simple visual assessment of CT images can predict the severity of illness, a resulting decrease in respiratory function, and the need for supplemental respiratory ventilation among patients with COVID-19.


Subject(s)
COVID-19/classification , COVID-19/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Amides/therapeutic use , Antiviral Agents/therapeutic use , Body Temperature , C-Reactive Protein/metabolism , COVID-19/physiopathology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , L-Lactate Dehydrogenase/blood , Lung/diagnostic imaging , Lymphocyte Count , Male , Middle Aged , Mucin-1/blood , Neutrophils , Predictive Value of Tests , Prognosis , Pyrazines/therapeutic use , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , SARS-CoV-2 , Steroids/therapeutic use , COVID-19 Drug Treatment
3.
J Biosci Bioeng ; 131(6): 696-702, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1141952

ABSTRACT

Monoclonal antibodies are extremely valuable functional biomaterials that are widely used not only in life science research but also in antibody drugs and test drugs. There is also a strong need to develop high-quality neutralizing antibodies as soon as possible in order to stop the rapid spread of new infectious diseases such as the SARS-CoV-2 virus. This study has developed a membrane-type immunoglobulin-directed hybridoma screening (MIHS) method for obtaining high-quality monoclonal antibodies with high efficiency and high speed. In addition to these advantages, this paper demonstrates that the MIHS method can selectively obtain monoclonal antibodies that specifically recognize the functional structure of proteins. The MIHS method is a useful technology that greatly contributes to the research community because it can be easily introduced in any laboratory that uses a flow cytometer.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Hybridomas/metabolism , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay/methods , Flow Cytometry/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , Green Fluorescent Proteins/metabolism , Humans , Hybridomas/cytology , Immunoglobulin Isotypes , Immunoprecipitation , Mice , Time Factors
4.
Internal Medicine ; 127(1):61-67, 2021.
Article in Japanese | ISHO-JP | ID: covidwho-994589

ABSTRACT

Summary Recent studies suggest that chest computed tomography (CT) may be useful in diagnosing COVID-19 pneumonia in endemic areas. On the other hand, CT scan has high sensitivity but low specificity in the diagnosis of COVID-19 pneumonia, because there are diseases with similar or identical imaging findings to COVID-19 pneumonia, and patients with underlying diseases such as emphysema, heart failure, and malignancy may have atypical or complex findings. In addition, patients with underlying diseases such as emphysema, heart failure, and malignancy may have atypical or complex findings.

SELECTION OF CITATIONS
SEARCH DETAIL